Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. II
نویسندگان
چکیده
AbstructShell clustering algorithms are ideally suited for computer vision tasks such as boundary detection and surface approximation, particularly when the boundaries have jagged or scattered edges and when the range data is sparse. This is because shell clustering is insensitive to local aberrations, it can be performed directly in image space, and unlike traditional approaches it does assume dense data and does not use additional features such as curvatures and surface normals. The shell clustering algorithms introduced in Part I of this paper assume that the number of clusters is known, however, which is not the case in many boundary detection and surface approximation applications. This problem can be overcome by considering cluster validity. In this paper, we introduce a validity measure called surface density which is explicitly meant for the type of applications considered in this paper. We show through theoretical derivations that surface density is relatively invariant to size and partiality (incompleteness) of the clusters. We describe unsupervised clustering algorithms that use the surface density measure and other measures to determine the optimum number of shell clusters automatically, and illustrate the application of the proposed algorithms to boundary detection in the case of intensity images and to surface approximation in the case of range images.
منابع مشابه
Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation-Part I
AbstructTraditionally, prototype-based fuzzy clustering algorithms such as the Fuzzy C Means (FCM) algorithm have been used to find “compact” or “filled” clusters. Recently, there have been attempts to generalize such algorithms to the case of hollow or “shell-like” clusters, i.e., clusters that lie in subspaces of feature space. The shell clustering approach provides a powerful means to solve ...
متن کاملBi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions
The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...
متن کاملA possibilistic clustering approach to novel fault detection and isolation
In this paper, a new approach for fault detection and isolation that is based on the possibilistic clustering algorithm is proposed. Fault detection and isolation (FDI) is shown here to be a pattern classification problem, which can be solved using clustering and classification techniques. A possibilistic clustering based approach is proposed here to address some of the shortcomings of the fuzz...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 3 شماره
صفحات -
تاریخ انتشار 1995